269 research outputs found

    Switching Local and Covariance Matching for Efficient Object Tracking

    Get PDF
    The covariance tracker finds the targets in consecutive frames by global searching. Covariance tracking has achieved impressive successes thanks to its ability of capturing spatial and statistical properties as well as the correlations between them. Nevertheless, the covariance tracker is relatively inefficient due to its heavy computational cost of model updating and comparing the model with the covariance matrices of the candidate regions. Moreover, it is not good at dealing with articulated object tracking since integral histograms are employed to accelerate the searching process. In this work, we aim to alleviate the computational burden by selecting appropriate tracking approaches. We compute foreground probabilities of pixels and localize the target by local searching when the tracking is in steady states. Covariance tracking is performed when distractions, sudden motions or occlusions are detected. Different from the traditional covariance tracker, we use Log-Euclidean metrics instead of Riemannian invariant metrics which are more computationally expensive. The proposed tracking algorithm has been verified on many video sequences. It proves more efficient than the covariance tracker. It is also effective in dealing with occlusions, which are an obstacle for local mode-seeking trackers such as the mean-shift tracker. 1

    Video from nearly still: An application to low frame-rate gait recognition

    Full text link
    In this paper, we propose a temporal super resolution ap-proach for quasi-periodic image sequence such as human gait. The proposed method effectively combines example-based and reconstruction-based temporal super resolution approaches. A periodic image sequence is expressed as a manifold parameterized by a phase and a standard mani-fold is learned from multiple high frame-rate sequences in the training stage. In the test stage, an initial phase for each frame of an input low frame-rate image sequence is estimated based on the standard manifold at first, and the manifold reconstruction and the phase estimation are then iterated to generate better high frame-rate images in the energy minimization framework that ensures the fitness to both the input images and the standard manifold. The pro-posed method is applied to low frame-rate gait recognition and experiments with real data of 100 subjects demonstrate a significant improvement by the proposed method, particu-larly for quite low frame-rate videos (e.g., 1 fps). 1

    Gait Identification Considering Body Tilt byWalking Direction Changes

    Get PDF
    Gait identification has recently gained attention as a method of identifying individuals at a distance. Thought most of the previous works mainly treated straight-walk sequences for simplicity, curved-walk sequences should be also treated considering situations where a person walks along a curved path or enters a building from a sidewalk. In such cases, person's body sometimes tilts by centrifugal force when walking directions change, and this body tilt considerably degrades gait silhouette and identification performance, especially for widely-used appearance-based approaches. Therefore, we propose a method of body-tilted silhouette correction based on centrifugal force estimation from walking trajectories. Then, gait identification process including gait feature extraction in the frequency domain and learning of a View Transformation Model (VTM) follows the silhouette correction. Experiments of gait identification for circular-walk sequences demonstrate the effectiveness of the proposed method

    Analysis of light transport in scattering media

    Get PDF
    We propose a new method to analyze light transport in homogeneous scattering media. The incident light undergoes multiple bounces in translucent objects, and produces a complex light field. Our method analyzes the light transport in two steps. First, single and multiple scattering are separated by projecting high-frequency stripe patterns. Then, multiple scattering is decomposed into each bounce component based on the light transport equation. The light field for each bounce is recursively estimated. Experimental results show that light transport in scattering media can be decomposed and visualized for each bounce.Microsoft Researc

    Gait Recognition: Databases, Representations, and Applications

    No full text
    There has been considerable progress in automatic recognition of people by the way they walk since its inception almost 20 years ago: there is now a plethora of technique and data which continue to show that a person’s walking is indeed unique. Gait recognition is a behavioural biometric which is available even at a distance from a camera when other biometrics may be occluded, obscured or suffering from insufficient image resolution (e.g. a blurred face image or a face image occluded by mask). Since gait recognition does not require subject cooperation due to its non-invasive capturing process, it is expected to be applied for criminal investigation from CCTV footages in public and private spaces. This article introduces current progress, a research background, and basic approaches for gait recognition in the first three sections, and two important aspects of gait recognition, the gait databases and gait feature representations are described in the following sections.Publicly available gait databases are essential for benchmarking individual approaches, and such databases should contain a sufficient number of subjects as well as covariate factors to realize statistically reliable performance evaluation and also robust gait recognition. Gait recognition researchers have therefore built such useful gait databases which incorporate subject diversities and/or rich covariate factors.Gait feature representation is also an important aspect for effective and efficient gait recognition. We describe the two main approaches to representation: model-free (appearance-based) approaches and model-based approaches. In particular, silhouette-based model-free approaches predominate in recent studies and many have been proposed and are described in detail.Performance evaluation results of such recent gait feature representations on two of the publicly available gait databases are reported: USF Human ID with rich covariate factors such as views, surface, bag, shoes, time elapse; and OU-ISIR LP with more than 4,000 subjects. Since gait recognition is suitable for criminal investigation applications of the gait recognition to forensics are addressed with real criminal cases in the application section. Finally, several open problems of the gait recognition are discussed to show future research avenues of the gait recognition

    Human tracking and segmentation supported by silhouette-based gait recognition

    Full text link
    Abstract — Gait recognition has recently gained attention as an effective approach to identify individuals at a distance from a camera. Most existing gait recognition algorithms assume that people have been tracked and silhouettes have been segmented successfully. Tacking and segmentation are, however, very difficult especially for articulated objects such as human beings. Therefore, we present an integrated algorithm for tracking and segmentation supported by gait recognition. After the tracking module produces initial results consisting of bounding boxes and foreground likelihood images, the gait recognition module searches for the optimal silhouette-based gait models corresponding to the results. Then, the segmentation module tries to segment people out using the provided gait silhouette sequence as shape priors. Experiments on real video sequences show the effectiveness of the proposed approach. I

    Gait Recognition Using Period-Based Phase Synchronization for Low Frame-Rate Videos

    Full text link
    Abstract—This paper proposes a method for period-based gait trajectory matching in the eigenspace using phase syn-chronization for low frame-rate videos. First, a gait period is detected by maximizing the normalized autocorrelation of the gait silhouette sequence for the temporal axis. Next, a gait silhouette sequence is expressed as a trajectory in the eigenspace and the gait phase is synchronized by time stretching and time shifting of the trajectory based on the detected period. In addition, multiple period-based matching results are integrated via statistical procedures for more robust matching in the presence of fluctuations among gait sequences. Results of experiments conducted with 185 subjects to evaluate the performance of the gait verification with various spatial and temporal resolutions, demonstrate the effectiveness of the proposed method. Keywords-gait recognition; low frame rate; phase synchro-nization; gait period; PCA I

    Consecutive Tracking and Segmentation Using Adaptive Mean-shift and Graph Cut

    Get PDF
    Abstract-We present an effective tracking and segmentation algorithm in which tracking and segmentation are carried out consecutively. Object tracking in video sequences is difficult since the appearance of an object tends to change. An adaptive tracker that employs color and shape features is adopted to conquer this problem. The target is modeled based on discriminative features selected using foreground/background contrast analysis. Tracking provides overall motion of the target for the segmentation module. Based on the overall motion, we segment object out using the effective graph cut algorithm. Markov Random Fields, which are the foundation of the graph cut algorithm, provide poor prior for specific shape. It is necessary to embed shape priors into the graph cut algorithm to achieve reasonable segmentation results. The object shape obtained by segmentation is used as shape priors to improve segmentation in next frame. We have verified the proposed approach and got positive results on challenging video sequences
    corecore